二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U 和 V ,使得每一条边都分别连接 U、V 中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图1 是一个二分图。为了清晰,我们以后都把它画成图2的形式。
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图3、图4中红色的边就是图2的匹配。
我们定义匹配点、匹配边、未匹配点、非匹配边,它们的含义非常显然。例如图3 中 1、4、5、7为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。
最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图4是一个最大匹配,它包含4条匹配边。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图4是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。
基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图5中的一条增广路如图6所示(图中的匹配点均用红色标出):
增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了1条。
我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法DFS和BFS版本的代码之前,先讲一下匈牙利树。
匈牙利树一般由BFS构造(类似于BFS树)。从一个未匹配点出发运行BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图7,可以得到如图8的一棵BFS树:
这棵树存在一个叶子节点为非匹配点(7号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含7号节点,那么从2号节点出发就会得到一棵匈牙利树。这种情况如图9所示(顺便说一句,图8中根节点2到非匹配叶子节点7显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。
下面给出匈牙利算法的DFS和BFS版本的代码:
// 顶点、边的编号均从 0 开始 // 邻接表储存 struct Edge { int from; int to; int weight; Edge(int f, int t, int w):from(f), to(t), weight(w) {} }; vector<int> G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */ vector<Edge> edges; typedef vector<int>::iterator iterator_t; int num_nodes; int num_left; int num_right; int num_edges; int matching[__maxNodes]; /* 存储求解结果 */ int check[__maxNodes]; bool dfs(int u) { for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每个邻接点 int v = edges[*i].to; if (!check[v]) { // 要求不在交替路中 check[v] = true; // 放入交替路 if (matching[v] == -1 || dfs(matching[v])) { // 如果是未盖点,说明交替路为增广路,则交换路径,并返回成功 matching[v] = u; matching[u] = v; return true; } } } return false; // 不存在增广路,返回失败 } int hungarian() { int ans = 0; memset(matching, -1, sizeof(matching)); for (int u=0; u < num_left; ++u) { if (matching[u] == -1) { memset(check, 0, sizeof(check)); if (dfs(u)) ++ans; } } return ans; }
queue<int> Q; int prev[__maxNodes]; int Hungarian() { int ans = 0; memset(matching, -1, sizeof(matching)); memset(check, -1, sizeof(check)); for (int i=0; i<num_left; ++i) { if (matching[i] == -1) { while (!Q.empty()) Q.pop(); Q.push(i); prev[i] = -1; // 设 i 为路径起点 bool flag = false; // 尚未找到增广路 while (!Q.empty() && !flag) { int u = Q.front(); for (iterator_t ix = G[u].begin(); ix != G[u].end() && !flag; ++ix) { int v = edges[*ix].to; if (check[v] != i) { check[v] = i; Q.push(matching[v]); if (matching[v] >= 0) { // 此点为匹配点 prev[matching[v]] = u; } else { // 找到未匹配点,交替路变为增广路 flag = true; int d=u, e=v; while (d != -1) { int t = matching[d]; matching[d] = e; matching[e] = d; d = prev[d]; e = t; } } } } Q.pop(); } if (matching[i] != -1) ++ans; } } return ans; }
匈牙利算法的要点如下
(1)从左边第1个顶点开始,挑选未匹配点进行搜索,寻找增广路。
a. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数+1,停止搜索。
b. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
(2)由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS版本通过函数调用隐式地使用一个栈,而BFS版本使用 prev 数组。
性能比较
两个版本的时间复杂度均为O(V⋅E)。DFS 的优点是思路清晰、代码量少,但是性能不如 BFS。我测试了两种算法的性能。对于稀疏图,BFS 版本明显快于 DFS 版本;而对于稠密图两者则不相上下。在完全随机数据 9000 个顶点 4,0000 条边时前者领先后者大约 97.6%,9000 个顶点 100,0000 条边时前者领先后者 8.6%, 而达到 500,0000 条边时 BFS 仅领先 0.85%。
补充定义和定理:
最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。
定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
C语言网提供由在职研发工程师或ACM蓝桥杯竞赛优秀选手录制的视频教程,并配有习题和答疑,点击了解:
一点编程也不会写的:零基础C语言学练课程
解决困扰你多年的C语言疑难杂症特性的C语言进阶课程
从零到写出一个爬虫的Python编程课程
只会语法写不出代码?手把手带你写100个编程真题的编程百练课程
信息学奥赛或C++选手的 必学C++课程
蓝桥杯ACM、信息学奥赛的必学课程:算法竞赛课入门课程
手把手讲解近五年真题的蓝桥杯辅导课程