图论

斯坦纳树Steiner Tree实例讲解

斯坦纳树Steiner Tree实例讲解说到斯坦纳树问题,它是一种组合优化问题,与最小生成树相似,是最短网络的一种。最小生成树是在给定的点集和边中寻求最短网络使所有点连通。而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小。……

图的遍历BFS广度优先搜索

图的遍历BFS广度优先搜索1.简介BFS(BreadthFirstSearch,广度优先搜索,又名宽度优先搜索),与深度优先算法在一个结点“死磕到底“的思维不同,广度优先算法关注的重点在于每一层的结点进……

什么是拓扑排序?

什么是拓扑排序?拓扑排序主要解决的问题是给一个图的所有节点排序。一、什么是拓扑排序在图论中,拓扑排序(TopologicalSorting)是一个有向无环图(DAG,DirectedAcyclicGraph)的所有顶……

上下界网络流总结

上下界网络流总结上下界网络流可以看做普通网络流的升级版,现在对于流量网络,我们不再只关注其流量的上界,而是同时关注流量的上下界。一、无源汇有上下界可行流这是上下界网络流中最简单的一种,给定一个没有源点和汇点、每条边的……

什么是虚树?

什么是虚树?当我们遇到一类频繁询问关键点信息的题目时,往往数据范围颇大,而对关键点总和有一定限制,此时我们可以建立虚树,将问题规模转化为关键点总和级别的。一、定义什么是虚树?当我们在树上有部分结点是无用的或用处不……

图的基础概念

图的基础概念图(Graph)是由顶点和连接顶点的边构成的离散结构。在计算机科学中,图是最灵活的数据结构之一,很多问题都可以使用图模型进行建模求解。图(Graph)通常会放在树(Tree)后面介绍,树可以说是图的特……

欧拉图的判定

欧拉图的判定本篇将简要介绍欧拉图的概念、实现和应用,帮助大家在答题中更好的判定。一、定义圈:任选图中一个顶点为起点,沿着不重复的边,经过不重复的顶点为途径,之后又回到起点的闭合途径称为圈。欧拉路径:通过图中所有边……

最小生成树,普利姆(Prim)算法及C/C++代码实现

最小生成树,普利姆(Prim)算法及C/C++代码实现1.最小生成树(又名:最小权重生成树)概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型……

DFS求有向图(无向图)两点间路径

DFS求有向图(无向图)两点间路径本文会围绕算法中DFS求有向图或无向图两点间所有路径,先讲解DFS以及有向图或无向图的意思。有向图在图中的边是有方向的,表现出来就是有个箭头指示方向,节点只能单向通信或传递消息,相当于单行道,无向图边……

最小生成树图文解析

最小生成树图文解析最小生成树英文是MinimumSpanningTree,对于最小生成树大家应该都不陌生,当然还有最大生成树,首先就简单总结一下算法里的生成树。一、什么是生成树?Spanning有跨越的意思,生成树一般……