解题思路:  以表尊敬先奉代码!!!
参考代码:

#注:gcd()最大公约数;lcm()最小公倍数
#解1:利用最大公约数和最小公倍数的性质逐个遍历判断出答案
def gcd(a,b):
    for i in range(b, 0, -1):
        if a % i == 0 and b % i == 0:
          return i
def lcm(a,b):
    for i in range(num1,a*b+1):
        if i % a == 0 and i % b == 0:
          return i
num1,num2 = map(int,input().split())
if num1<num2:
    flag = num1
    num1=num2
    num2=flag
gcd_ans=gcd(num1,num2)
lcm_ans=lcm(num1,num2)
print("{:.0f} {:.0f}".format(gcd_ans,lcm_ans))

#解2:先利用辗转相除法(递归)求出最大公约数,再通过两数的积除以最大公约数求出最小公倍数
def gcd(a,b):
    if a%b==0:
        return b
    else:
        return gcd(b,a%b)
def lcm(a,b):
    ans = (a*b)/gcd_ans
    return ans
num1,num2 = map(int,input().split())
if num1<num2:
    flag = num1
    num1=num2
    num2=flag
gcd_ans=gcd(num1,num2)
lcm_ans=lcm(num1,num2)
print("{:.0f} {:.0f}".format(gcd_ans,lcm_ans))


点赞(0)
 

0.0分

3 人评分

C语言网提供由在职研发工程师或ACM蓝桥杯竞赛优秀选手录制的视频教程,并配有习题和答疑,点击了解:

一点编程也不会写的:零基础C语言学练课程

解决困扰你多年的C语言疑难杂症特性的C语言进阶课程

从零到写出一个爬虫的Python编程课程

只会语法写不出代码?手把手带你写100个编程真题的编程百练课程

信息学奥赛或C++选手的 必学C++课程

蓝桥杯ACM、信息学奥赛的必学课程:算法竞赛课入门课程

手把手讲解近五年真题的蓝桥杯辅导课程

评论列表 共有 0 条评论

暂无评论