引言:
本题其实是来源于一个非常著名的犹太故事--------约瑟夫环!
罗马人攻占了桥塔帕特,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓。于是决定了自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀。然后下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
编译环境: Debain Ubuntu gcc
测试图片:
解题思路:
数学公式推导:
/* If number = 3
* f(1) = 0
* f(2) = 1 = (f(1) + 3) % 2
* f(3) = 1 = (f(2) + 3) % 3
* f(4) = 0 = (f(3) + 3) % 4
* f(5) = 3 = (f(4) + 3) % 5
* ...
* f(n) = x = (f(n-1) + 3) % n
* */
结果应该是f(n)+1。
参考代码:
1 #include <iostream> 2 #include <list> //链表 3 using namespace std; 4 int main() 5 { 6 int total = 0; 7 cin >> total; //输入环总数 8 int number = 3; //循环 9 int last = 0; // f(1) = 0 10 for(int i = 2; i <= total; ++i) 11 last = (last + number) % i; 14 cout<< last+1 <<endl; 15 return 0; 16 }
0.0分
21 人评分
#include<iostream> using namespace std; void baoshu(int N) { int a[N]; int b[N]; int k=0; for(int i=1;i<=N;i++) { a[i]=i; } for(int i=1;i<=N;i++) { if(a[i]%3==0) { k=i; } } if(k==N) cout<<k-1<<endl; else cout<<N<<endl; } int main() { int N; cin>>N; if(N>3) baoshu(N); else cout<<2<<endl; return 0; }